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Received 25 January 1991 

Abstract An explicit expression is derived for the three-variable generating funnian 
P(x, y, 1) =I,,, Xna, Z,,, x ~ " Y ~ " ' z ' c ~ , ~ , , ,  where c",~, ,  is the number of convex polygons 
with horizontal width n, vertical height m and area I. 

1. Introduction 

The self-avoiding polygon (SAP) was considered as a model of crystal growth 
(Temperley 1952) or polymer (Temperley 1956, de Gennes 1979, Privman and Svrakic 
1988). The problem in two dimensions is to find the generating function for the number 
of polygons on a lattice with definite perimeter and/or area. An exact solution has not 
yet been found. However, simpler SAP problems can be solved. In particular there are 
four classes of SAPS on the square lattice where exact solutions were obtained; these 
are the pyramid polygons, staircase polygons, convex and row-convex polygons, 

A convex polygon on the square lattice has the property that a straight line on the 
bonds of the dual lattice cuts the bonds of the polygon at most twice. The pyramid-like 
polygon is a special case of the convex polygon such that the width at the bottom 
equals the width of the bounding rectangle. Temperley (1952) suggested long ago that 
the pyramid-like polygon can be considered as a two-dimensional model of the growth 
of a crystal on a plane substrate. He obtained the generating function for the number 
of such polygons with fixed area. Recently Lin (1991) generalized the result of 
Temperley and derived the generating function for the number of polygons with fixed 
values of height, width and area. 

The three-variable generating function for polygons on the square lattice is 
defined by 

C O "  

(1) 
2" 2m r P k y ,  2)' 1 L 1 x Y C".",,. 

n = ,  m = ,  , = I  

where c ~ , ~ , ,  is the number of polygons with 2n  horizontal steps, 2m vertical steps and 
area r. Exact solutions of (1) have been found for the staircase polygons (Temperley 
1956, P6lya 1969, Lin et ol 1987, Brak and Guttmann 1990, Lin and Tzeng 1991) and 
row-convex polygons (Temperley 1956, Brak et nl 1990, Brak and Guttmann 1990, Lin 
1990b, Lin and Tzeng 1991). 

The perimeter generating function, which is a special case of (1) with x = y  and 
z = 1, for convex polygons was first obtained by Delest and Viennot (1984) and then 
rederived by simpler methods (Kim 1988, Guttmann and Enting 1988, Lin and Chang 
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1988). The perimeter and area generating function for convex polygons has not been 
solved. The rth area-weighted moment is related to the rth partial derivative of (1) 
with respect to z evaluated at  the point z = 1. A general method to obtain the rth 
moment was given by Lin (1990a). Lin used the computer algebra program REDUCE 
(Hearn 1968, Stauffer et a/ 1989) to calculate the first ten moments, and his result 
agrees with the non-rigorous result of Enting and Guttmann (1989) for the first two 
moments. 

In this paper we derive the exact three-variable generating function for convex 
polygons in section 4. Wereview the pyramid polygon and staircase polygon generating 
functions respectively in sections 2 and 3. 

2. Pyramid polygon 

Consider a pyramid polygon on the square lattice as shown in figure 1. The generating 
function can be written in the form 

m 

G(x, Y, z) = 1 g m b ,  y, 2) (2) 
m = ,  

... L..- ~ .. *.~ ~ .^_^_.I :__ c..- P~ ~ - I .  ~~~~ ~ ~ ~ ~ ~~~. SA.. .I .L ~ 1~ ~ _ _  ~ wnere g ,  i s  me gcriciaung iunwun lor aii pyr~amiu puiygons whose wioin ar me Dotiom 
is m. Using the method of privman and Svrakic (1988), Lin (1991) proved that 

m m 
1 f"-lgm(X,y, z)=R(x,  y, Z, I)=x' 1 (y2z)"(l - tx2z")Qy2 (3) 

m-1 " = I  

where 

Qn= n (1-1~~2')). (4) 
k = l  

Consequently the generating function is 

The special case of x = y = 1 was first derived by Temperley (1952). Another special 
case of z = 1 was first obtained by Lin and Chang (1988). 

Using the identity (Andrews 1976) 

Figure I .  A pyramid polygon on the square lattice with width m. 



Exact solution of the convex polygon perimeter 2413 

where 

where 

3. Staircase polygon 

Consider a staircase polygon on the square lattice as shown in figure 2. The generating 
function is 

m 

H ( x , y , z ) =  1 h , ( x , y , z )  (10) 
",=0 

where h, is the generating function for all staircase polygons whose top row contains 
m squares. The special case of x = y  was solved by Brak and Guttmann (1990) and 
the general case by Lin and Tzeng (1991). The result is 

Figure 2. A staircase polygon. 
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where 

4. Convex polygon 

It was shown by Lin and Chang (1988) that a convex polygon can be divided by a 
horizontal line into two (top and bottom) polygons such that the top polygon is a 
pyramid polygon with maximum possible area. The generating function for convex 
polygons is given by (Lin and Chang 1988, Lin 1990a) 

where 

G and gm are defined by ( 5 )  and (8) respectively. In (14),fm is the generating function 
for a special class of convex polygons (see figure 3) whose top row contains m squares. 
The top right-hand comer of such a polygon is also a comer of the bounding rectangle. 
Notice that such a polygon can be divided by a horizontal line uniquely into two 
polygons such that the top polygon is a staircase polygon with maximum possible area 
and the bottom polygon is an inverse pyramid polygon as shown in figure 3. Con- 
seq??ent!y we hzve 

where hm." is the generating function for staircase polygons whose top and bottom 
rows contain respectively m and n squares. The first term in the RHS of (16) corresponds 
to the special case where the bottom polygon does not exist. 

+ m +  

Figure 3. A convex polygon whore tap right-hand corner is a corner of the bounding 
rectangle. 
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The generating function h m ~ n  is given by 

h,,,=h,,,, =A[h, (h i  -h.)l+Sm,,y2z"x2" m a n  (17) 

where 

(--Y')" 
n := ] ( 1 - z')(x2- 2 ' )  

R:. = 

The derivation of (17) is given in the appendix. 

the convex polygons on the square lattice: 
Substituting (16) and (17) into (14), we finally obtain the generating function for 

m m m-, m 

P(x ,  y ,  Z) = G+ g,S, + 2 y 2  E g,,, 1 x-2n x z'x2'S,+, 
m =3 m = 2  n = ,  r=n 

where 
"8-1 m 

"-1 p=0 
T, = YZn f i n + p  

R,= 1 and S 2 = 0 .  We have expanded (19) to 20th order in x and y ,  and the result 
agrees with the exact counting of the convex polygons. 
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Appendix 

The generating function fim,n satisfies the following relation 
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Equation ( A l )  is derived as follows. The first term on the RHS represents a one-row 
polygon which contains n squares. The second term represents the different ways to 
put a staircase polygon on the top of this one-row polygon as shown in figure 4. Using 
the identity 

we have 

h m , i = ~ ~ 4 x ~ S m , i + h m )  

h,,z = y z z 2 [ ~ 4 S , , 2 - ~ 2 y Z ~ S , , ,  + h,( 1 + x 2 - y Z z ) ] .  
(A3) 

It follows from (Al )  that we have the recursion relation 

The boundary condition (A3) implies that the solution of equation (A4) can be written 
in the form 

hm," = E &&,,. + k p . .  (As) 
r = l  

Substituting (A5) into (A4), we get 

pn+2-2(1 +X2-y2z"+')p,+i + x 2 2 p ,  = 0 

4." = y  z x 

dn-2,n = -y422n~2x2'"-2 ' ( l  + x 2 - y  z "9. 

n = 1,2,. . . (A61 

r <  n (A7) 

(A81 

(A9) 

(A101 

2 "+, 
d,,n+2- z(1 + x 2 - y  z )d,,,+, + x 2 z 2 d , ,  = 0 

1 n 2" 

4 24-1 2 ( n - i )  dn-,," =-y  z x 

t-----"+ 
Figure 4. A staircase polygon can be divided into a top (staircase) polygon and a bottom 
(one-row) polygon by a horizontal line. 
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The recursion relation (A61 has been solved by Lin and Tzeng (1991) and the 

p,=AhL+A'h.  ( A l l )  
where h. and h: are defined by (11) and (18) respectively. The coefficients A and A' 
are determined by the boundary condition 

P I = Y 2 z  p2=y222(1+x2-y22) .  (A12) 
The result is 

A =  - A ' = y 2 z / ( h : - h l ) .  (A131 

solution ist 

Similarly the solution of (A7) is 
d,, ,=B,h;+B:h,,  r < n  

where the coefficients E,  and E :  are determined by the boundary condition 

The result is 
(.Ai$ 4+, = v , + , + o , n , + l  

B.= -Ah, B : = A h : .  (A16) 

_ I ,  _ , I  d,,,,, = E,iz;+2+E:h,+2. 

Substituting (AS), ( A l l ) ,  (A13), (A14), and (A16) into (AS), we get 
n - l  

h,=,- = A ( h ,  ( h  - h,) + 1 8,-,J h j h, - hih ;)\ + 8,v,3dz,,7. (A17) 

It is simple to show that h,,,n = hn,m as it should be from the symmetry of the staircase 
polygon. It follows from (A17) that 

hm," = h,,m = A[h,(hL - h , ) ] +  S , , , , ~ * Z " X ~ "  m n. (A181 

\ r= 1 1 
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