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Exact solution of the convex polygon perimeter and area
generating function
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Abstract. An explicit expression is derived for the three-variable generating function
Plx,y,2) =%, 0t Z s Tyt xz"yz"'z’c,, m,r» Where ¢, . . is the number of convex polygons
with horizontal width n, vertical height m and area r.

1. Introduction

The self-avoiding polygon (sap) was considered as a model of crystal growth
(Temperley 1952) or polymer {Temperley 1956, de Gennes 1979, Privman and Svrakic
1988). The problem in two dimensions is to find the generating function for the number
of polygons on a lattice with definite perimeter and/or area. An exact solution has not
yet been found. However, simpler sap problems can be solved. In particular there are
four classes of saps on the square lattice where exact solutions were obtained; these
are the pyramid polygons, staircase polygons, convex and row-convex polygons.

A convex polygon on the square lattice has the property that a straight line on the
bonds of the dual lattice cuts the bonds of the polygon at most twice. The pyramid-like
polygon is a special case of the convex polygon such that the width at the bottom
equals the width of the bounding rectangle. Temperley (1952) suggested long ago that
the pyramid-like polygon can be considered as a two-dimensional model of the growth
of a crystal on a plane substrate. He obtained the generating function for the number
of such polygons with fixed area. Recently Lin (1991) generalized the result of
Temperley and derived the generating function for the number of polygons with fixed
values of height, width and area.

The three-variable generating function for polygons on the square lattice is
defined by

P(x,y,2)= E. E] Z] X2y Cpme (1)
where ¢, , is the number of polygons with 2n horizontal steps, 2m vertical steps and
area r. Exact solutions of (1) have been found for the staircase polygons (Temperley
1956, Pélya 1969, Lin et al 1987, Brak and Guttmann 1990, Lin and Tzeng 1991) and
row-convex polygons (Ternperley 1956, Brak er al 1990, Brak and Guttmann 1990, Lin
1990b, Lin and Tzeng 1991).

The perimeter generating function, which is a special case of (1) with x =y and
z=1, for convex polygons was first obtained by Delest and Viennot (1984) and then
rederived by simpler methods (Kim 1988, Guttmann and Enting 1988, Lin and Chang
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1988). The perimeter and area generating function for convex polygons has not been
solved. The rth area-weighted moment is related to the rth partial derivative of (1)
with respect to z evaluated at the poini z=1. A general method to obtain the rth
moment was given by Lin (1990a). Lin used the computer algebra program REDUCE
(Hearn 1968, Stauffer et al 1989) to calculate the first ten moments, and his result
agrees with the non-rigorous result of Enting and Guttmann (1989) for the first two
moments.

In this paper we derive the exact three-variable generating function for convex
polygons in section 4. We review the pyramid polygon and staircase polygon generating
functions respectively in sections 2 and 3.

2. Pyramid polygon

Consider a pyramid polygon on the square lattice as shown in figure 1. The generating
function can be written in the form

G(x, 3 Z)=mSZ: gmlX, 3, 2) (2)
wherte g, is the genera “g funciion for ali pyramid poiygons whose widih ai the botiom
is m. Using the method of privman and Svrakic (1988), Lin (1991) proved that
L mlenn ) =REuRan=x I (05100 )
where
'—'kf[l (1—x?z%). (4)

Consequently the generating function is

(yz)"(1- x22")]
Mo, (1- xzzk)
The special case of x =y =1 was first derived by Temperley (1952). Another special

case of z=1 was first obtained by Lin and Chang (1988).
Using the identity {Andrews 1976)

( lnlo(l - tzm)) = éo g (2.2 qu(2)] (6)

G(x,y,2)=R(x,y,z,1)=x> 2 [ (5)

-

— ———

Figure 1. A pyramid polygon on the square lattice with width m.
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where

M -2z >0
Gn =4 k=1

1 =0

it can be shown that

=21 —x%) kz (x*0)*t., (N
=0
gn=%" T (7*)"q2 1= QH 2"V o+ (122" My = 2"l ] )
n=1
where
k
| Z (D) Gnin—r(2)/ g (2)gi - (2) k=0
fon =1 7= 9)
k<0,

3. Staircase polygon

Consider a staircase polygon on the square lattice as shown in figure 2. The generating
function is

Hi{x,y,z)= ¥ h,(x,y 2) (10)
m=0
where h,, is the generating function for all staircase polygons whose top row contains

m squares. The special case of x =y was solved by Brak and Guttmann (1990) and
the general case by Lin and Tzeng (1991). The result is

© o0 -1
h,,=y2(xzz)"(1+ Z Rmzm(m+1+2n}/2)(l+ Z Rmzm(m+1}f2) (1])
m=1 n=1
o o =1
H(x,y,z)=x2(l+ ¥ R,,,z'"""+3”1)(1+ ¥ Rmz"’(”'*””) —x? (12)
m=1 m=1

o o —]

Figure 2. A staircase polygon.
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where
(=y°)"
O, (1-z")01—x%2)

R,= {13)

4, Convex polygon

It was shown by Lin and Chang (1988) that a convex polygon can be divided by a
horizontal line into two (top and bottom} polygons such that the top polygon is a
pyramid polygon with maximum possible area. The generating function for convex
polygons is given by (Lin and Chang 1988, Lin 1990a)

a0 m—1 N «© o
Plx,y,2)=G+2 } g4 ¥ x " T fispt L ZuSa (14)
ms=2 n=1 p=0 m=3
where
m—2
Sp= ¥ gX"(m—-n—1) (15)
n=1

G and g, are defined by (5) and (8) respectively. In (14), f,, is the generating function
for a special class of convex polygons (see figure 3) whose top row contains m squares.
The top right-hand corner of such a polygon is also a corner of the bounding rectangle.
Notice that such a polygon can be divided by a horizontal line uniquely into two
polygons such that the top polygon is a staircase polygon with maximum possible area
and the bottom polygon is an inverse pyramid polygon as shown in figure 3. Con-

uuuuuuuuu
fm = hm + Z hm,nSrH-l (16)
n=2

where h,,, is the generating function for staircase polygons whose top and bottom
rows contain respectively m and n squares. The first term in the rus of (16) corresponds
to the special case where the bottom polygon does not exist.

— a —

Figure 3. A convex polygon whase top right-hand corner is a corner of the bounding
rectangle.
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The generating function h,, , is given by
B = By = AR (B~ 1) ]+ 8, 72" X" m=n (17)

where

- -1
hrn=y2zn(l+ E R:'“z!n(fﬂ‘*'l+2n)/2)(l+ Z Rfmzm(m+1),v'2)
m=1

, (_yl)m
S TN e ypE s (18)
A=y22/(H;~ by).

The derivation of (17) is given in the appendix.
Substituting (16) and (17) into (14), we finally obtain the generating function for
the convex polygons on the square lattice:

o0 =) m=1 a0
P(xy,2)=G+ L g.5.,+2y" ¥ gu L x7" L 2'x"'8,1
m=3 =2 n=1

r=n

+2( E ngm)(1+A E Sr+l(h:-'_hr))

m—1 r—n-1

+2A E &mn Z x7 Z S.h Z (hrh::+p_h:hn+p) (19)
n=1 p=0

nr=2 r=n+1
where

m—1 a0
Tu=3% X" % hyup

n=1 p=0

= yZ( z szk(k+!.)f2(zk+l - zm(k+l))[(] _x22k+\)(1 _zkv‘r\)]"\)

k=0
© -1

X( 2 szk(k+l),v'2) (20)
k=0

R,=1 and 8,=0. We have expanded (19) to 20th order in x and ¥, and the result
agrees with the exact counting of the convex polygons.
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Appendix

The generating function h,,, satisfies the following relation

n

hon=y'2" ("2"5.",,,+ L) h,,.,m)- (A1)
1 k=0

r=
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Equation (Al) is derived as follows. The first term on the rRuS represents a one-row
polygon which contains n squares. The second term represents the different ways to
put a staircase polygon on the top of this one-row polygon as shown in figure 4. Using
the identity

©
hp=% hpy (A2)
k=1
we have
By =3 2(x8,,,+ h,,)
P = y?2°[%*8,,2 = x*¥728,, 1+ h,, (1 + x3— y*2)]. (A3
It follows from (A1) that we have the recursion relation
Bz — 21+ X2 =y 2" Y i + X222, ,
= 72" 2P0 8  r2 = (14 X} Bt + B ). (A4)

The boundary condition (A3) implies that the solution of equation (A4} can be written
in the form

oin= 3. Bt hpi: (AS)
Substituting (A5) into (A4), we get

Pz~ 21+ X = y* 2" Np, o+ x222p, =0 n=1,2,... (A6)

Arpia—z(1+x*=y*2""Nd, . +x%2%d,, =0 r<n (A7)

d,,=y'z"x" (A8)

“d, ==yt (A9)

dnan=—y 2" "1+ x>~ y?z" "), (A10)

e »

Figure 4. A staircase polygon can be divided into a top (staircase) polygon and a bottom
(one-row) polygon by a horizontal line,
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The recursion relation (A6) has been solved by Lin and Tzeng (1991) and the
sofution ist

Pn=Ah,+A'h, (A1)

where h, and h, are defined by (11) and (18) respectively. The coefficients A and A’
are determined by the boundary condition

p=yz pr=y’ 2 (1+x*—y%2), (A12)
The result is

A=—A'=)’z/(h\—h). (A13)
Similarly the solution of (A7) is

d..=Bh,+B.h, r<n (A14)
where the coefficients B, and B, are determined by the boundary condition

d.—,r+1 = B,# ;+1 + B;'}iﬁ-! dr,r+2 =B, + B;‘hr+2 . (Al 5)
The result is

B.=—Ah, B, = Ah]. (Al16)

Substituting {A8), (A11), (Al13), {(Al4), and (A16) into (AS5), we get

(h'h
i N (NS Ak fabl ¥

n—1
hm,_=A(hm(h;—hn)+ Y 8. —h_h'_]/+6m'ﬂd,_,,n_ {A17)
r=1

It is simple to show that h,, , = b, as it should be from the symmetry of the staircase
polygon. It follows from (A17) that

Hon = by = ALB, (B — R, ]+ 6m,nyzz"x2" m= (A18)
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